Polynomial Optimzation in Quantum Information Theory

Sabine Burgdorf

University of Konstanz

ICERM - 2018
Real Algebraic Geometry and Optimization

Warm Up

- Entanglement is one of the key features in Quantum Information
- Bell '64:

- How to distinguish \mathcal{C} and \mathcal{Q} ?
- What is the correct definition for \mathcal{Q} ? Does it matter?
- Can Polynomial Optimization help to understand these sets?

RAG and POP basics

Polynomial Optimization

- $f \in \mathbb{R}[\underline{X}]$ polynomial in commuting variables
- $g_{0}=1, g_{1}, \ldots, g_{r} \in \mathbb{R}[\underline{X}]$ defining a semi-algebraic set:

$$
K=\left\{\underline{a} \in \mathbb{R}^{n} \mid g_{0}(\underline{a}) \geq 0, \ldots, g_{r}(\underline{a}) \geq 0\right\}
$$

- Want to minimize f over K

$$
\begin{aligned}
f_{*} & =\inf f(\underline{a}) & & \text { s.t. } \underline{a} \in K \\
& =\sup a \in \mathbb{R} & & \text { s.t. } f-a \geq 0 \text { on } K
\end{aligned}
$$

- NP-hard

RAG and POP basics

RAG helps

$$
f_{*}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \geq 0 \text { on } K
$$

- $M(g):=\left\{p=\sum_{j} h_{j}^{2} g_{i_{j}}\right.$ for some $\left.h_{i} \in \mathbb{R}[\underline{X}]\right\}$
- sos relaxation

$$
f_{s o s}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \in M(g) \quad \text { "SDP" }
$$

RAG and POP basics

RAG helps

$$
f_{*}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \geq 0 \text { on } K
$$

- $M(g):=\left\{p=\sum_{j} h_{j}^{2} g_{i_{j}}\right.$ for some $\left.h_{i} \in \mathbb{R}[\underline{X}]\right\}$
- sos relaxation

$$
f_{\text {sos }}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \in M(g)
$$

"SDP"

- $f_{\text {sos }}$ is always a lower bound but might be strict
- If $M(g)$ is archimedean:

$$
f_{*}=f_{s o s}
$$

RAG and POP basics

SOS hierarchy

- $M(g)_{t}:=\left\{p=\sum_{j} h_{j}^{2} g_{i_{j}}\right.$ for some $\left.h_{i} \in \mathbb{R}[\underline{X}]_{t}\right\}$
- sos hierarchy

$$
f_{t}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \in M(g)_{t}
$$

- We have
- $f_{t} \leq f_{t+1} \leq f_{*}$
- f_{t} converges to $f_{\text {sos }}$ as $t \rightarrow \infty$
- If $M(g)$ is archimedean: $f_{\text {sos }}=f_{*}$

RAG and POP basics

SOS hierarchy

- $M(g)_{t}:=\left\{p=\sum_{j} h_{j}^{2} g_{i_{j}}\right.$ for some $\left.h_{i} \in \mathbb{R}[\underline{X}]_{t}\right\}$
- sos hierarchy

$$
f_{t}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \in M(g)_{t}
$$

- We have
- $f_{t} \leq f_{t+1} \leq f_{*}$
- f_{t} converges to $f_{\text {sos }}$ as $t \rightarrow \infty$
- If $M(g)$ is archimedean: $f_{\text {sos }}=f_{*}$
- Certificate of exactness:
- Flatness of dual solution
- Allows extraction of optimizers

NC-RAG and NC-POP

NC Polynomials

- Want to replace scalar variables by matrices/operators
- Free algebra $\mathbb{R}\langle\underline{X}\rangle$ with noncommuting variables X_{1}, \ldots, X_{n}
- Polynomial

$$
f=\sum_{w} f_{w} w
$$

- Let $\underline{A} \in\left(\mathcal{S}^{d}\right)^{n}: f(\underline{A})=f_{1} l_{d}+f_{X_{1}} A_{1}+f_{X_{2} X_{1}} A_{2} A_{1} \ldots$

NC-RAG and NC-POP

NC Polynomials

- Want to replace scalar variables by matrices/operators
- Free algebra $\mathbb{R}\langle\underline{X}\rangle$ with noncommuting variables X_{1}, \ldots, X_{n}
- Polynomial

$$
f=\sum_{w} f_{w} w
$$

- Let $\underline{A} \in\left(\mathcal{S}^{d}\right)^{n}: f(\underline{A})=f_{1} I_{d}+f_{X_{1}} A_{1}+f_{X_{2} X_{1}} A_{2} A_{1} \ldots$
- Add involution $*$ on $\mathbb{R}\langle\underline{X}\rangle$
- fixes \mathbb{R} and $\left\{X_{1}, \ldots, X_{n}\right\}$ pointwise
- $X_{i}^{*}=X_{i}$
- Consequence

$$
f^{*} f(\underline{A})=f(\underline{A})^{T} f(\underline{A}) \succeq 0
$$

NC-RAG and NC-POP

NC Polynomial Optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$
- $g_{0}=1, g_{1}, \ldots, g_{r} \in \mathbb{R}\langle\underline{X}\rangle$ defining a semi-algebraic set:

$$
K=\left\{\underline{A} \mid g_{0}(\underline{A}) \succeq 0, \ldots, g_{r}(\underline{A}) \succeq 0\right\}
$$

- Want to minimize f over K

$$
f_{*}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \geq 0 \text { on } K
$$

NC-RAG and NC-POP

Eigenvalue optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$

$$
f_{n c}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \succeq 0 \text { on } K
$$

- Observation: Checking if $f=\sum_{i} h_{i}^{*} h_{i}$ is an SDP so as well checking $f=\sum_{j} h_{j}^{*} g_{i j} h_{j}$ (with degree bounds)

NC-RAG and NC-POP

Eigenvalue optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$

$$
f_{n c}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \succeq 0 \text { on } K \quad \text { NP-hard } \odot
$$

- Observation: Checking if $f=\sum_{i} h_{i}^{*} h_{i}$ is an SDP so as well checking $f=\sum_{j} h_{j}^{*} g_{i j} h_{j}$ (with degree bounds)
- sos relaxation
$M_{n c}(g):=\left\{p=\sum_{j} h_{j}^{*} g_{i j} h_{j}\right.$ for some $\left.h_{i} \in \mathbb{R}\langle\underline{X}\rangle\right\}$

$$
f_{\text {sos }}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \in M_{n c}(g)
$$

- Fact: $f_{s o s} \leq f_{n c}$
- Theorem (Helton et al.): If $M_{n c}(g)$ is archimedean, then $f_{s o s}=f_{n c}$.

NC-RAG and NC-POP

Eigenvalue optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$

$$
\begin{array}{ll|l}
f_{n c}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \succeq 0 \text { on } K \quad \text { NP-hard } \Theta
\end{array}
$$

- $M_{n c}(g)_{t}:=\left\{p=\sum_{j} h_{j}^{*} g_{i j} h_{j}\right.$ for some $\left.h_{j} \in \mathbb{R}\langle\underline{X}\rangle_{t}\right\}$
- sos hierarchy

$$
f_{t}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \in M_{n c}(g)_{t} \quad \text { SDP } ;
$$

- $f_{t} \leq f_{t+1} \leq f_{n c}$ but inequalities might be strict
- f_{t} converges to $f_{\text {sos }}$ as $t \rightarrow \infty$
- If $M_{n c}(g)$ is archimedean: $f_{s o s}=f_{n c}$ and hence $f_{t} \rightarrow f_{n c}$ as $t \rightarrow \infty$

NC-RAG and NC-POP

Trace optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$

$$
f_{t r}=\sup a \in \mathbb{R} \quad \text { s.t. } \operatorname{Tr}(f-a) \geq 0 \text { on } K \quad \text { NP-hard }:
$$

- K contains only operators, for which a trace is defined

NC-RAG and NC-POP

Trace optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$

$$
f_{t r}=\sup a \in \mathbb{R} \quad \text { s.t. } \operatorname{Tr}(f-a) \geq 0 \text { on } K
$$

- K contains only operators, for which a trace is defined
- If $f=\sum_{j} h_{j}^{*} g_{i j} h_{j}+\sum_{k}\left[p_{k}, q_{k}\right]$ then $\operatorname{Tr}(f(\underline{A})) \geq 0$ for all $\underline{A} \in K$
- sos relaxation

$$
M_{t r}(g):=\left\{\sum_{j} h_{j}^{*} g_{i j} h_{j} \text { for some } h_{i} \in \mathbb{R}\langle\underline{X}\rangle\right\}+[\mathbb{R}\langle\underline{X}\rangle, \mathbb{R}\langle\underline{X}\rangle]
$$

$$
f_{s o s}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \in M_{t r}(g)
$$

- Fact: $f_{\text {sos }} \leq f_{t r}$
- Theorem (B.,Klep et al.): If $M_{t r}(g)$ is archimedean, then $f_{s o s}=f_{t r}$.

NC-RAG and NC-POP

Trace optimization

- Let $f \in \mathbb{R}\langle\underline{X}\rangle$

$$
f_{t r}=\sup a \in \mathbb{R} \quad \text { s.t. } \operatorname{Tr}(f-a) \geq 0 \text { on } K \quad \text { NP-hard }:
$$

- $M_{t r}(g)_{t}:=\left\{\sum_{j} h_{j}^{*} g_{i j} h_{j}\right.$ for some $\left.h_{j} \in \mathbb{R}\langle\underline{X}\rangle_{t}\right\}+\sum[\mathbb{R}\langle\underline{X}\rangle, \mathbb{R}\langle\underline{X}\rangle]$
- sos hierarchy

$$
f_{t}=\sup a \in \mathbb{R} \quad \text { s.t. } f-a \in M_{t r}(g)_{t} \quad \text { SDP } \odot
$$

- $f_{t} \leq f_{t+1} \leq f_{t r}$ but inequalities might be strict
- f_{t} converges to $f_{\text {sos }}$ as $t \rightarrow \infty$
- If $M_{t r}(g)$ is archimedean: $f_{s o s}=f_{t r}$ and hence $f_{t} \rightarrow f_{t r}$ as $t \rightarrow \infty$

Back to Quantum Information

- Entanglement is one of the key features in Quantum Information
- Bell '64:

- How to distinguish \mathcal{C} and \mathcal{Q} ?
- What is the correct definition for \mathcal{Q} ? Does it matter?
- Can Polynomial Optimization help to understand these sets?

Basics of quantum theory

- A quantum system corresponds to a Hilbert space \mathcal{H}
- Its states are unit vectors on \mathcal{H}

Basics of quantum theory

- A quantum system corresponds to a Hilbert space \mathcal{H}
- Its states are unit vectors on \mathcal{H}
- A state on a composite system is a unit vector ψ on a tensor Hilbert space, e.g. $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- ψ is entangled if it is not a product state

$$
\psi_{A} \otimes \psi_{B} \text { with } \psi_{A} \in \mathcal{H}_{A}, \psi_{B} \in \mathcal{H}_{B}
$$

Basics of quantum theory

- A quantum system corresponds to a Hilbert space \mathcal{H}
- Its states are unit vectors on \mathcal{H}
- A state on a composite system is a unit vector ψ on a tensor Hilbert space, e.g. $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- ψ is entangled if it is not a product state

$$
\psi_{A} \otimes \psi_{B} \text { with } \psi_{A} \in \mathcal{H}_{A}, \psi_{B} \in \mathcal{H}_{B}
$$

- A state $\psi \in \mathcal{H}$ can be measured
- outcomes $a \in A$
- POVM: a family $\left\{E_{a}\right\}_{a \in A} \subseteq B(\mathcal{H})$ with $E_{a} \succeq 0$ and $\sum_{a \in A} E_{a}=1$
- probablity of getting outcome a is $p(a)=\psi^{\top} E_{a} \psi$.

Nonlocal bipartite correlations

- Question sets S, T, Answer sets A, B
- No (classical) communication

- Which correlations $p(a, b \mid s, t)$ are possible?

Correlations

Classical strategy \mathcal{C}

Independent probability distributions $\left\{p_{s}^{a}\right\}_{a}$ and $\left\{p_{t}^{b}\right\}_{b}$:

$$
p(a, b \mid s, t)=p_{s}^{a} \cdot p_{t}^{b}
$$

shared randomness: allow convex combinations

Correlations

Classical strategy \mathcal{C}

Independent probability distributions $\left\{p_{s}^{a}\right\}_{a}$ and $\left\{p_{t}^{b}\right\}_{b}$:

$$
p(a, b \mid s, t)=p_{s}^{a} \cdot p_{t}^{b}
$$

shared randomness: allow convex combinations
Quantum strategy \mathcal{Q}
POVMs $\left\{E_{s}^{a}\right\}_{a}$ and $\left\{F_{t}^{b}\right\}_{b}$ on Hilbert spaces $\mathcal{H}_{A}, \mathcal{H}_{B}, \psi \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$:

$$
p(a, b \mid s, t)=\psi^{T}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

- Nonlocality: $\left(E_{s}^{a} \otimes 1\right)\left(1 \otimes F_{t}^{b}\right)=\left(1 \otimes F_{t}^{b}\right)\left(E_{s}^{a} \otimes 1\right)$
- If $\psi=\psi_{A} \otimes \psi_{B}$ then we have classical correlation

More correlations

Quantum strategy \mathcal{Q}
POVMs $\left\{E_{s}^{a}\right\}_{a}$ and $\left\{F_{t}^{b}\right\}_{b}$ on Hilbert spaces $\mathcal{H}_{A}, \mathcal{H}_{B}, \psi \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$:

$$
p(a, b \mid s, t)=\psi^{\top}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

More correlations

Quantum strategy \mathcal{Q}
POVMs $\left\{E_{s}^{a}\right\}_{a}$ and $\left\{F_{t}^{b}\right\}_{b}$ on Hilbert spaces $\mathcal{H}_{A}, \mathcal{H}_{B}, \psi \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$:

$$
p(a, b \mid s, t)=\psi^{T}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

Quantum strategy \mathcal{Q}_{c}
POVMs $\left\{E_{s}^{a}\right\}_{a}$ and $\left\{F_{t}^{b}\right\}_{b}$ on a joint Hilbert space, but $\left[E_{x}^{a}, F_{y}^{b}\right]=0$:

$$
p(a, b \mid s, t)=\psi^{T}\left(E_{s}^{a} \cdot F_{t}^{b}\right) \psi
$$

Fact

$$
\mathcal{C} \subseteq \mathcal{Q} \subseteq \overline{\mathcal{Q}} \subseteq \mathcal{Q}_{c}
$$

Tsirelson's problem

Fact

$$
\mathcal{C} \subseteq \mathcal{Q} \subseteq \overline{\mathcal{Q}} \subseteq \mathcal{Q}_{c}
$$

- Bell: $\mathcal{C} \neq \mathcal{Q}$
- closure conjecture [Slofstra '16]: $\mathcal{Q} \neq \overline{\mathcal{Q}}$
- weak Tsirelson [Slofstra '16]: $\mathcal{Q} \neq \mathcal{Q}_{c}$
- Dykema et al. '17: Concrete example in a decent subset of \mathcal{Q}
- strong Tsirelson (open): Is $\overline{\mathcal{Q}}=\mathcal{Q}_{c}$?
- strong Tsirelson is equivalent to Connes embedding problem

Nonlocal games

- Characterized by
- 2 sets of questions S, T, asked with probability distribution π
- 2 sets of answers A, B
- A winning predicate $V: A \times B \times S \times T \rightarrow\{0,1\}$

Nonlocal games

- Characterized by
- 2 sets of questions S, T, asked with probability distribution π
- 2 sets of answers A, B
- A winning predicate $V: A \times B \times S \times T \rightarrow\{0,1\}$
- Winning probability (value of the game)

$$
\begin{aligned}
\omega & =\sup _{p} \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b ; s, t) p(a, b \mid s, t) \\
& =\sup _{p} \sum_{a, b, s, t} f_{a b s t} p(a, b \mid s, t)
\end{aligned}
$$

- optimize over correlations $p \in\left\{\mathcal{C}, \mathcal{Q}, \mathcal{Q}_{c}\right\}$

SOS relaxation over \mathcal{C}

$$
\omega_{\mathcal{C}}=\sup _{p} \sum_{a, b, s, t} f_{a b s t} p_{s}^{a} \cdot p_{t}^{b}
$$

SOS relaxation over \mathcal{C}

$$
\omega_{\mathcal{C}}=\sup _{p} \sum_{a, b, s, t} f_{a b s t} p_{s}^{a} \cdot p_{t}^{b}
$$

- We can write this as POP:
- $f((\underline{p}, \underline{q})):=\sum_{a, b, s, t} f_{a b s t} p_{s}^{a} \cdot q_{t}^{b} \in \mathbb{R}[\underline{p}, \underline{q}]$
- $K=\left\{(\underline{p}, \underline{q}) \mid p_{s}^{a}, q_{t}^{b} \geq 0, \sum_{a} p_{s}^{a}=\sum_{b} q_{t}^{b}=1\right\}$
- $M(g)$ is archimedean

SOS relaxation over \mathcal{C}

$$
\omega_{\mathcal{C}}=\sup _{p} \sum_{a, b, s, t} f_{a b s t} p_{s}^{a} \cdot p_{t}^{b}
$$

- We can write this as POP:
- $f((\underline{p}, \underline{q})):=\sum_{a, b, s, t} f_{a b s t} p_{s}^{a} \cdot q_{t}^{b} \in \mathbb{R}[\underline{p}, \underline{q}]$
- $K=\left\{(\underline{p}, \underline{q}) \mid p_{s}^{a}, q_{t}^{b} \geq 0, \sum_{a} p_{s}^{a}=\sum_{b} q_{t}^{b}=1\right\}$
- $M(g)$ is archimedean
- Hence

$$
\begin{align*}
\omega_{\mathcal{C}} & =\sup f(\underline{p}, \underline{q}) ; & & \text { s.t. }(\underline{p}, \underline{q}) \in K \\
& =\inf a \in \mathbb{R} & & \text { s.t. } a-f \geq 0 \text { on } K \\
& =\inf a \in \mathbb{R} & & \text { s.t. } a-f \in M(g) \quad\left(f_{\text {sos }}\right) \\
& \leq \inf a \in \mathbb{R} & & \text { s.t. } a-f \in M(g)_{t} \quad\left(f_{t}\right) \tag{t}
\end{align*}
$$

- Converging hierarchy of SDP upper bounds

SOS relaxation over \mathcal{Q}_{c}

$$
\omega_{\mathcal{Q}_{c}}=\sup \sum_{a, b, s, t} f_{a b s t} \psi^{T}\left(E_{s}^{a} \cdot F_{t}^{b}\right) \psi
$$

SOS relaxation over \mathcal{Q}_{c}

$$
\omega_{\mathcal{Q}_{c}}=\sup \sum_{a, b, s, t} f_{a b s t} \psi^{T}\left(E_{s}^{a} \cdot F_{t}^{b}\right) \psi
$$

- We can write this as NC-POP:
- $f(\underline{E}, \underline{F}):=\sum_{a, b, s, t} f_{a b s t} E_{s}^{a} \cdot F_{t}^{b} \in \mathbb{R}\langle\underline{E}, \underline{F}\rangle$
- $K=\left\{(\underline{E}, \underline{F}) \mid E_{s}, F_{t} \succeq 0, \sum_{a} E_{s}^{a}=\sum_{b} F_{t}^{b}=1,\left[E_{s}^{a}, F_{t}^{b}\right]=0\right\}$
- $M_{n c}(g)$ is archimedean

SOS relaxation over \mathcal{Q}_{c}

$$
\omega_{\mathcal{Q}_{c}}=\sup \sum_{a, b, s, t} f_{a b s t} \psi^{T}\left(E_{s}^{a} \cdot F_{t}^{b}\right) \psi
$$

- We can write this as NC-POP:
- $f(\underline{E}, \underline{F}):=\sum_{a, b, s, t} f_{a b s t} E_{s}^{a} \cdot F_{t}^{b} \in \mathbb{R}\langle\underline{E}, \underline{F}\rangle$
- $K=\left\{(\underline{E}, \underline{F}) \mid E_{s}, F_{t} \succeq 0, \sum_{a} E_{s}^{a}=\sum_{b} F_{t}^{b}=1,\left[E_{s}^{a}, F_{t}^{b}\right]=0\right\}$
- $M_{n c}(g)$ is archimedean
- Hence

$$
\begin{align*}
\omega_{\mathcal{C}} & =\sup \psi^{T} f(\underline{E}, \underline{F}) \psi ; & & \text { s.t. }(\underline{E}, \underline{F}) \in K \\
& =\inf a \in \mathbb{R} & & \text { s.t. } a-f \succeq 0 \text { on } K \\
& =\inf a \in \mathbb{R} & & \text { s.t. } a-f \in M_{n c}(g) \quad\left(f_{\text {sos }}\right) \\
& \leq \inf a \in \mathbb{R} & & \text { s.t. } a-f \in M_{n c}(g)_{t}
\end{align*} \quad\left(f_{t}\right)
$$

- Converging hierarchy of SDP upper bounds

SOS relaxation over \mathcal{Q}

$$
\omega_{\mathcal{Q}}=\sup \sum_{a, b, s, t} f_{a b s t} \operatorname{Tr}\left(E_{s}^{a} \otimes F_{t}^{b}\right)
$$

- Cameron et al.: For most games we have $p(a, b \mid s, t)=\operatorname{Tr}\left(\tilde{E}_{s}^{a} \tilde{F}_{t}^{b}\right)$ with $\tilde{E}_{s}^{a}, \tilde{F}_{t}^{b} \succeq 0, \sum_{a} \tilde{E}_{s}^{a}=\sum_{b} \tilde{F}_{t}^{b}=D$ with $\operatorname{Tr}\left(D^{2}\right)=1$

SOS relaxation over \mathcal{Q}

$$
\omega_{\mathcal{Q}}=\sup \sum_{a, b, s, t} f_{a b s t} \operatorname{Tr}\left(E_{s}^{a} \otimes F_{t}^{b}\right)
$$

- Cameron et al.: For most games we have $p(a, b \mid s, t)=\operatorname{Tr}\left(\tilde{E}_{s}^{a} \tilde{F}_{t}^{b}\right)$ with $\tilde{E}_{s}^{a}, \tilde{F}_{t}^{b} \succeq 0, \sum_{a} \tilde{E}_{s}^{a}=\sum_{b} \tilde{F}_{t}^{b}=D$ with $\operatorname{Tr}\left(D^{2}\right)=1$
- We can write this as NC-POP:
- $f(\underline{E}, \underline{F}):=\sum_{a, b, s, t} f_{a b s t} E_{s}^{a} \cdot F_{t}^{b} \in \mathbb{R}\langle\underline{E}, \underline{F}\rangle$
- $K=\left\{(\underline{E}, \underline{F}) \mid E_{s}, F_{t} \succeq 0, \sum_{a} E_{s}^{a}=\sum_{b} F_{t}^{b}=D, \operatorname{Tr}\left(D^{2}\right)=1\right\}$
- Hence

$$
\begin{aligned}
\omega_{\mathcal{C}}= & \sup \operatorname{Tr} f(\underline{E}, \underline{F}) ; & & \text { s.t. }(E, E, D) \in K \\
& \leq \inf a \in \mathbb{R} & & \text { s.t. } a-f \in M_{t r}(g) \\
& \leq \inf a \in \mathbb{R} & & \text { s.t. } a-f \in M_{t r}(g)_{t}
\end{aligned}
$$

- Converging sequence of upper SDP bounds

CHSH Game

- Questions $S=T=\{0,1\}$, Answers $A=B=\{0,1\}$
- Alice \& Bob win, if $a+b \equiv s t \bmod 2$

CHSH Game

- Questions $S=T=\{0,1\}$, Answers $A=B=\{0,1\}$
- Alice \& Bob win, if $a+b \equiv s t \bmod 2$
- $\omega_{\mathcal{C}}=\frac{3}{4}$
- $\omega_{\mathcal{Q}}=\omega_{\mathcal{Q}_{c}}=\frac{1}{2}+\frac{1}{2 \sqrt{2}} \approx 0.854$
- $1^{\text {st }}$ level of SOS hierarchies are exact

CHSH Game

- Questions $S=T=\{0,1\}$, Answers $A=B=\{0,1\}$
- Alice \& Bob win, if $a+b \equiv s t \bmod 2$
- $\omega_{\mathcal{C}}=\frac{3}{4}$
- $\omega_{\mathcal{Q}}=\omega_{\mathcal{Q}_{c}}=\frac{1}{2}+\frac{1}{2 \sqrt{2}} \approx 0.854$
- $1^{\text {st }}$ level of SOS hierarchies are exact

- Alternative formulation:
- 2 measurements with 2 outcomes each: $E_{s}^{0}, E_{s}^{1}, F_{t}^{0}, F_{t}^{1}$
- Setting $E_{s}:=E_{s}^{0}-E_{s}^{1}, F_{t}:=F_{t}^{0}-F_{t}^{1}$ one obtains the CHSH inequality

$$
f_{C H S H}:=E_{0} F_{0}+E_{0} F_{1}+E_{1} F_{0}-E_{1} F_{1}
$$

- Optimizing $f_{C H S H}$ over variants of \mathcal{C}, \mathcal{Q} give $\omega_{\mathcal{C}}, \omega_{\mathcal{Q}}$

I_{3322} inequality

- Questions $S=T=\{0,1,2\}$, Answers $A=B=\{0,1\}$

$$
\begin{aligned}
f:= & E_{0} F_{0}+E_{0} F_{1}+E_{0} F_{2}+E_{1} F_{0}+E_{1} F_{1}-E_{1} F_{3}+E_{2} F_{0}-E_{2} F_{1} \\
& -E_{0}-2 F_{0}-F_{1}
\end{aligned}
$$

I_{3322} inequality

- Questions $S=T=\{0,1,2\}$, Answers $A=B=\{0,1\}$

$$
\begin{aligned}
f:= & E_{0} F_{0}+E_{0} F_{1}+E_{0} F_{2}+E_{1} F_{0}+E_{1} F_{1}-E_{1} F_{3}+E_{2} F_{0}-E_{2} F_{1} \\
& -E_{0}-2 F_{0}-F_{1}
\end{aligned}
$$

- Maximizing over $\mathcal{C}: f_{*} \leq 0$
- Best lower bound: 0.250875384

I_{3322} inequality

- Questions $S=T=\{0,1,2\}$, Answers $A=B=\{0,1\}$

$$
\begin{aligned}
f:= & E_{0} F_{0}+E_{0} F_{1}+E_{0} F_{2}+E_{1} F_{0}+E_{1} F_{1}-E_{1} F_{3}+E_{2} F_{0}-E_{2} F_{1} \\
& -E_{0}-2 F_{0}-F_{1}
\end{aligned}
$$

- Maximizing over $\mathcal{C}: f_{*} \leq 0$
- Best lower bound: 0.250875384
- NC-SOS upper bounds:

level	psd	trace
1	0.375	0.375
2	0.25094006	0.2509397
3	0.25087556	0.2508754

- Pal \& Vertesi computed (eigenvalue) SOS-bounds for 240 Bell inequalities of which 20 are not matching $\left(\geq 10^{-4}\right)$ the lower bound. 4 of them get exact ($\leq 10^{-8}$) using trace SOS-bounds, about $1 / 2$ of them improve

Quantum coloring as feasibility problem

Quantum coloring as feasibility problem

$\chi(G)=\min t \in \mathbb{N}$ s.t. $x_{u}^{i} \in\{0,1\}, u \in V(G), i \in[t]$,

$$
\begin{aligned}
& \sum_{i \in[t]} x_{u}^{i}=1 \quad \forall u \in V(G) \\
& x_{u}^{i} x_{u}^{j}=0 \quad \forall i \neq j, \forall u \in V(G) \\
& x_{u}^{i} x_{v}^{i}=0 \quad \forall u v \in E(G)
\end{aligned}
$$

Quantum coloring as feasibility problem

$$
\begin{align*}
\chi_{q}(G)=\min t \in \mathbb{N} \text { s.t. } & x_{u}^{i} \succeq 0, u \in V(G), i \in[t], \\
& \sum_{i \in[t]} x_{u}^{i}=1 \quad \forall u \in V(G), \\
& x_{u}^{i} x_{u}^{j}=0 \quad \forall i \neq j, \forall u \in V(G), \tag{*}\\
& x_{u}^{i} x_{v}^{i}=0 \quad \forall u v \in E(G) \\
& \left(x_{u}^{i}\right)^{2}=x_{u}^{i} \quad \forall u \in V(G), i \in[t]
\end{align*}
$$

Quantum coloring as feasibility problem

$$
\begin{align*}
\chi_{q}(G)=\min t \in \mathbb{N} \text { s.t. } & x_{u}^{i} \succeq 0, u \in V(G), i \in[t], \\
& \sum_{i \in[t]} x_{u}^{i}=1 \quad \forall u \in V(G), \\
& x_{u}^{i} x_{u}^{j}=0 \quad \forall i \neq j, \forall u \in V(G), \tag{*}\\
& x_{u}^{i} x_{v}^{i}=0 \quad \forall u v \in E(G) \\
& \left(x_{u}^{i}\right)^{2}=x_{u}^{i} \quad \forall u \in V(G), i \in[t]
\end{align*}
$$

- We can write this as
$\min t \in \mathbb{N}$ s.t. \exists operator solution of $(*)$

Nullstellensätze

Let $g_{1}, \ldots, g_{r} \in \mathbb{C}[\underline{X}]$
Theorem (weak Nullstellensatz)
Let $I=\left(g_{1}, \ldots, g_{r}\right), V(I):=\left\{\underline{a} \in \mathbb{C}^{n} \mid g_{1}(\underline{a})=\cdots=g_{r}(\underline{a})=0\right\}$. Then

$$
V(I)=\varnothing \Leftrightarrow 1 \in I .
$$

Nullstellensätze

Let $g_{1}, \ldots, g_{r} \in \mathbb{C}[\underline{X}]$
Theorem (weak Nullstellensatz)
Let $I=\left(g_{1}, \ldots, g_{r}\right), V(I):=\left\{\underline{a} \in \mathbb{C}^{n} \mid g_{1}(\underline{a})=\cdots=g_{r}(\underline{a})=0\right\}$. Then

$$
V(I)=\varnothing \Leftrightarrow 1 \in I .
$$

Let $g_{1}, \ldots, g_{r} \in \mathbb{C}\langle\underline{X}\rangle$
Theorem (Amitsur Nullstellensatz)
Let $Z(I):=\left\{\underline{A} \in R^{n} \mid R\right.$ primitive ring , $\left.g_{1}(\underline{A})=\cdots=g_{r}(\underline{A})=0\right\}$. Then

$$
Z(I)=\varnothing \Leftrightarrow 1 \in\left(g_{1}, \ldots, g_{r}\right) .
$$

- We have an algorithm to compute NC Gröbner bases, but it might not terminate...

Against all odds... ${ }^{1}$

- Gröbner basis: $4 \leq \chi_{q}\left(G_{13}\right)$

[^0]
Against all odds... ${ }^{1}$

- Gröbner basis: $4 \leq \chi_{q}\left(G_{13}\right) \leq \chi\left(G_{13}\right)=4$
- Consequence $\chi_{q}\left(G_{14}\right)=4<5=\chi\left(G_{14}\right)$

[^1]
Final Remarks

- Quantum theory gives archimedean property for NC-SOS relaxations
- dual side (linear forms \& moments) offers even more bounds (Laurent et al.)
- We can transfer the flatness machinery \& might obtain concrete optimizer/strategies

Final Remarks

- Quantum theory gives archimedean property for NC-SOS relaxations
- dual side (linear forms \& moments) offers even more bounds (Laurent et al.)
- We can transfer the flatness machinery \& might obtain concrete optimizer/strategies
Open problems
- What is the geometry of (quantum) correlations?
- Is there always a finite dimensional solution/strategy for a finite game?
- How can we detect optimality if there is no finite dimensional solution?

Final Remarks

- Quantum theory gives archimedean property for NC-SOS relaxations
- dual side (linear forms \& moments) offers even more bounds (Laurent et al.)
- We can transfer the flatness machinery \& might obtain concrete optimizer/strategies
Open problems
- What is the geometry of (quantum) correlations?
- Is there always a finite dimensional solution/strategy for a finite game?
- How can we detect optimality if there is no finite dimensional solution?

POEMA

Polynomial Optimization, Efficiency through Moments and Algebra Marie Skłodowska-Curie Innovative Training Network 2019-2022

> POEMA network goal is to train scientists at the interplay of algebra, geometry and computer science for polynomial optimization problems and to foster scientific and technological advances, stimulating interdisciplinary and intersectoriality knowledge exchange between algebraists, geometers, computer scientists and industrial actors facing real-life optimization problems.

Partners:

Inria, Sophia Antipolis, France (Bernard Mourrain)
(2) CNRS, LAAS, Toulouse, France (Didier Henrion)
(3) Sorbonne Université, Paris, France (Mohab Safey el Din)
(4) NWO-I/CWI, Amsterdam, the Netherlands (Monique Laurent)
(5) Univ. Tilburg, the Netherlands (Etienne de Klerk)
(6) Univ. Konstanz, Germany (Markus Schweighofer)
(7) Univ. degli Studi di Firenze, Italy (Giorgio Ottaviani)
(8) Univ. of Birmingham, UK (Mikal Kočvara)9 F.A. Univ. Erlangen-Nuremberg, Germany (Michael Stingl)
(10) Univ. of Tromsoe, Norway (Cordian Riener)
(11) Artelys SA, Paris, France (Arnaud Renaud)

Associate partners:

(1) IBM Research, Ireland (Martin Mevissen)
(2) NAG, UK (Mike Dewar)
(3) RTE, France (Jean Maeght)

15 PhD positions available from Sep. $1^{\text {st }} 2019$

Contact: bernard.mourrain@inria.fr, the partner leaders,
www-sop.inria.fr/members/Bernard.Mourrain/ announces/POEMA/

[^0]: ${ }^{1}$ with Piovesan, Mancinska, Roberson

[^1]: ${ }^{1}$ with Piovesan, Mancinska, Roberson

