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Warm Up

I Entanglement is one of the key features in Quantum Information
I Bell ’64:

Classical C

Quantum Q

I How to distinguish C and Q?
I What is the correct definition for Q? Does it matter?
I Can Polynomial Optimization help to understand these sets?
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RAG and POP basics
Polynomial Optimization

I f ∈ R[X ] polynomial in commuting variables
I g0 = 1,g1, . . . ,gr ∈ R[X ] defining a semi-algebraic set:

K = {a ∈ Rn | g0(a) ≥ 0, . . . ,gr (a) ≥ 0}

I Want to minimize f over K

f∗ = inf f (a) s.t. a ∈ K
= sup a ∈ R s.t. f − a ≥ 0 on K

I NP-hard
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RAG and POP basics
RAG helps

f∗ = sup a ∈ R s.t. f − a ≥ 0 on K NP-hard

I M(g) := {p =
∑

j h2
j gij for some hi ∈ R[X ]}

I sos relaxation

fsos = sup a ∈ R s.t. f − a ∈ M(g) "SDP"

I fsos is always a lower bound
but might be strict

x4
1 x2

2 + x2
1 x4

2 − 3x2
1 x2

2 + 1

I If M(g) is archimedean:
f∗ = fsos
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RAG and POP basics
SOS hierarchy

I M(g)t := {p =
∑

j h2
j gij for some hi ∈ R[X ]t}

I sos hierarchy

ft = sup a ∈ R s.t. f − a ∈ M(g)t SDP

I We have
I ft ≤ ft+1 ≤ f∗
I ft converges to fsos as t →∞
I If M(g) is archimedean: fsos = f∗

I Certificate of exactness:
I Flatness of dual solution
I Allows extraction of optimizers
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NC-RAG and NC-POP
NC Polynomials

I Want to replace scalar variables by matrices/operators
I Free algebra R〈X 〉 with noncommuting variables X1, . . . ,Xn

I Polynomial
f =

∑
w

fww

I Let A ∈ (Sd)n: f (A) = f1Id + fX1A1 + fX2X1A2A1 . . .

I Add involution ∗ on R〈X 〉
I fixes R and {X1, . . . ,Xn} pointwise
I X ∗i = Xi

I Consequence
f ∗f (A) = f (A)T f (A) � 0
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NC-RAG and NC-POP
NC Polynomial Optimization

I Let f ∈ R〈X 〉
I g0 = 1,g1, . . . ,gr ∈ R〈X 〉 defining a semi-algebraic set:

K = {A | g0(A) � 0, . . . ,gr (A) � 0}

I Want to minimize f over K

f∗ = sup a ∈ R s.t. f − a ≥ 0 on K
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NC-RAG and NC-POP
Eigenvalue optimization

I Let f ∈ R〈X 〉

fnc = sup a ∈ R s.t. f − a � 0 on K NP-hard

I Observation: Checking if f =
∑

i h∗i hi is an SDP
so as well checking f =

∑
j h∗j gij hj (with degree bounds)

I sos relaxation
Mnc(g) := {p =

∑
j h∗j gij hj for some hi ∈ R〈X 〉}

fsos = sup a ∈ R s.t. f − a ∈ Mnc(g)

I Fact: fsos ≤ fnc

I Theorem (Helton et al.): If Mnc(g) is archimedean, then fsos = fnc .
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NC-RAG and NC-POP
Eigenvalue optimization

I Let f ∈ R〈X 〉
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I Mnc(g)t := {p =
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NC-RAG and NC-POP
Trace optimization

I Let f ∈ R〈X 〉

ftr = sup a ∈ R s.t. Tr(f − a) ≥ 0 on K NP-hard

I K contains only operators, for which a trace is defined

I If f =
∑

j h∗j gij hj +
∑

k [pk ,qk ] then Tr(f (A)) ≥ 0 for all A ∈ K
I sos relaxation

Mtr (g) := {
∑

j h∗j gij hj for some hi ∈ R〈X 〉}+ [R〈X 〉,R〈X 〉]

fsos = sup a ∈ R s.t. f − a ∈ Mtr (g)

I Fact: fsos ≤ ftr
I Theorem (B.,Klep et al.): If Mtr (g) is archimedean, then fsos = ftr .
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NC-RAG and NC-POP
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Back to Quantum Information

I Entanglement is one of the key features in Quantum Information
I Bell ’64:

Classical C

Quantum Q

I How to distinguish C and Q?
I What is the correct definition for Q? Does it matter?
I Can Polynomial Optimization help to understand these sets?



13

Basics of quantum theory

I A quantum system corresponds to a Hilbert space H
I Its states are unit vectors on H

I A state on a composite system is a unit vector ψ on a tensor
Hilbert space, e.g. HA ⊗HB

I ψ is entangled if it is not a product state

ψA ⊗ ψB with ψA ∈ HA, ψB ∈ HB

I A state ψ ∈ H can be measured
I outcomes a ∈ A
I POVM: a family {Ea}a∈A ⊆ B(H) with Ea � 0 and

∑
a∈A Ea = 1

I probablity of getting outcome a is p(a) = ψT Eaψ.
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Nonlocal bipartite correlations

I Question sets S,T , Answer sets A,B
I No (classical) communication

ts
a b

I Which correlations p(a,b | s, t) are possible?
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Correlations

Classical strategy C
Independent probability distributions {pa

s}a and {pb
t }b:

p(a,b | s, t) = pa
s · pb

t

shared randomness: allow convex combinations

Quantum strategy Q
POVMs {Ea

s }a and {F b
t }b on Hilbert spaces HA,HB, ψ ∈ HA ⊗HB:

p(a,b | s, t) = ψT (Ea
s ⊗ F b

t )ψ

I Nonlocality: (Ea
s ⊗ 1)(1⊗ F b

t ) = (1⊗ F b
t )(E

a
s ⊗ 1)

I If ψ = ψA ⊗ ψB then we have classical correlation
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More correlations

Quantum strategy Q
POVMs {Ea

s }a and {F b
t }b on Hilbert spaces HA,HB, ψ ∈ HA ⊗HB:

p(a,b | s, t) = ψT (Ea
s ⊗ F b

t )ψ

Quantum strategy Qc

POVMs {Ea
s }a and {F b

t }b on a joint Hilbert space, but [Ea
x ,F b

y ] = 0:

p(a,b | s, t) = ψT (Ea
s · F b

t )ψ

Fact

C ⊆ Q ⊆ Q ⊆ Qc
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Tsirelson’s problem

Fact

C ⊆ Q ⊆ Q ⊆ Qc

I Bell: C 6= Q
I closure conjecture [Slofstra ’16]: Q 6= Q
I weak Tsirelson [Slofstra ’16]: Q 6= Qc

I Dykema et al. ’17: Concrete example in a decent subset of Q
I strong Tsirelson (open): Is Q = Qc?
I strong Tsirelson is equivalent to Connes embedding problem
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Nonlocal games

I Characterized by
I 2 sets of questions S,T , asked with probability distribution π

I 2 sets of answers A,B

I A winning predicate V : A× B × S × T → {0,1}

I Winning probability (value of the game)

ω = sup
p

∑
s∈S,t∈T

π(s, t)
∑

a∈A,b∈B

V (a,b; s, t)p(a,b|s, t)

= sup
p

∑
a,b,s,t

fabstp(a,b | s, t)

I optimize over correlations p ∈ {C,Q,Qc}
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SOS relaxation over C

ωC = sup
p

∑
a,b,s,t

fabstpa
s · pb

t

I We can write this as POP:
I f ((p,q)) :=

∑
a,b,s,t fabstpa

s · qb
t ∈ R[p,q]

I K = {(p,q) | pa
s ,qb

t ≥ 0,
∑

a pa
s =

∑
b qb

t = 1}
I M(g) is archimedean

I Hence

ωC = sup f (p,q); s.t. (p,q) ∈ K

= inf a ∈ R s.t. a− f ≥ 0 on K

= inf a ∈ R s.t. a− f ∈ M(g) (fsos)

≤ inf a ∈ R s.t. a− f ∈ M(g)t (ft)

I Converging hierarchy of SDP upper bounds
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SOS relaxation over Qc

ωQc = sup
∑

a,b,s,t

fabstψ
T (Ea

s · F b
t )ψ

I We can write this as NC-POP:
I f (E ,F ) :=

∑
a,b,s,t fabstEa

s · F b
t ∈ R〈E ,F 〉

I K = {(E ,F ) | Es,Ft � 0,
∑

a Ea
s =

∑
b F b

t = 1, [Ea
s ,F b

t ] = 0}
I Mnc(g) is archimedean

I Hence

ωC = supψT f (E ,F )ψ; s.t. (E ,F ) ∈ K

= inf a ∈ R s.t. a− f � 0 on K

= inf a ∈ R s.t. a− f ∈ Mnc(g) (fsos)
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SOS relaxation over Q

ωQ = sup
∑

a,b,s,t

fabst Tr(Ea
s ⊗ F b

t )

I Cameron et al.: For most games we have p(a,b | s, t) = Tr(Ẽa
s F̃ b

t )

with Ẽa
s , F̃ b

t � 0,
∑

a Ẽa
s =

∑
b F̃ b

t = D with Tr(D2) = 1

I We can write this as NC-POP:
I f (E ,F ) :=

∑
a,b,s,t fabstEa

s · F b
t ∈ R〈E ,F 〉

I K = {(E ,F ) | Es,Ft � 0,
∑

a Ea
s =

∑
b F b

t = D,Tr(D2) = 1}

I Hence
ωC = sup Tr f (E ,F ); s.t. (E ,F ,D) ∈ K

≤ inf a ∈ R s.t. a− f ∈ Mtr (g)

≤ inf a ∈ R s.t. a− f ∈ Mtr (g)t

I Converging sequence of upper SDP bounds
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CHSH Game

I Questions S = T = {0,1}, Answers A = B = {0,1}

ts
a b

I Alice & Bob win, if a + b ≡ st mod 2

I ωC =
3
4

I ωQ = ωQc = 1
2 + 1

2
√

2
≈ 0.854

I 1st level of SOS hierarchies are exact

I Alternative formulation:
I 2 measurements with 2 outcomes each: E0

s ,E1
s , F 0

t ,F
1
t

I Setting Es := E0
s − E1

s , Ft := F 0
t − F 1

t one obtains the
CHSH inequality

fCHSH := E0F0 + E0F1 + E1F0 − E1F1

I Optimizing fCHSH over variants of C,Q give ωC , ωQ
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I3322 inequality

I Questions S = T = {0,1,2}, Answers A = B = {0,1}

f :=E0F0 + E0F1 + E0F2 + E1F0 + E1F1 − E1F3 + E2F0 − E2F1

− E0 − 2F0 − F1

I Maximizing over C: f∗ ≤ 0
I Best lower bound: 0.250875384
I NC-SOS upper bounds:

level psd trace
1 0.375 0.375
2 0.25094006 0.2509397
3 0.25087556 0.2508754

I Pal & Vertesi computed (eigenvalue) SOS-bounds for 240 Bell
inequalities of which 20 are not matching (≥ 10−4) the lower
bound. 4 of them get exact (≤ 10−8) using trace SOS-bounds,
about 1/2 of them improve
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I Pal & Vertesi computed (eigenvalue) SOS-bounds for 240 Bell
inequalities of which 20 are not matching (≥ 10−4) the lower
bound. 4 of them get exact (≤ 10−8) using trace SOS-bounds,
about 1/2 of them improve
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Quantum coloring as feasibility problem

• • • •

∑
i∈[t]

x i
u = 1 ∀u ∈ V (G),

∀ i 6= j ,∀u ∈ V (G),

∀uv ∈ E(G)

= min t ∈ N s.t. ,u ∈ V (G), i ∈ [t ],

I We can write this as

min t ∈ N s.t. ∃ operator solution of (∗)
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Nullstellensätze
Let g1, . . . ,gr ∈ C[X ]

Theorem (weak Nullstellensatz)
Let I = (g1, . . . ,gr ), V (I) := {a ∈ Cn | g1(a) = · · · = gr (a) = 0}. Then

V (I) = ∅⇔ 1 ∈ I.

Let g1, . . . ,gr ∈ C〈X 〉

Theorem (Amitsur Nullstellensatz)
Let Z (I) := {A ∈ Rn | R primitive ring ,g1(A) = · · · = gr (A) = 0}. Then

Z (I) = ∅⇔ 1 ∈ (g1, . . . ,gr ).

I We have an algorithm to compute NC Gröbner bases, but it might
not terminate...
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Against all odds...1

I Gröbner basis: 4 ≤ χq(G13)

≤ χ(G13) = 4
I Consequence χq(G14) = 4 < 5 = χ(G14)

1with Piovesan, Mancinska, Roberson
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Final Remarks

I Quantum theory gives archimedean property for NC-SOS
relaxations

I dual side (linear forms & moments) offers even more bounds
(Laurent et al.)

I We can transfer the flatness machinery & might obtain concrete
optimizer/strategies

Open problems
I What is the geometry of (quantum) correlations?

I Is there always a finite dimensional solution/strategy for a finite
game?

I How can we detect optimality if there is no finite dimensional
solution?

Thank you for your attention.
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