Polynomial Optimzation in Quantum Information Theory

Sabine Burgdorf

University of Konstanz

ICERM - 2018 Real Algebraic Geometry and Optimization

Warm Up

- Entanglement is one of the key features in Quantum Information
- Bell '64:

- How to distinguish C and Q?
- What is the correct definition for Q? Does it matter?
- Can Polynomial Optimization help to understand these sets?

Polynomial Optimization

- $f \in \mathbb{R}[X]$ polynomial in commuting variables
- $g_0 = 1, g_1, \dots, g_r \in \mathbb{R}[\underline{X}]$ defining a semi-algebraic set:

$$K = \{\underline{a} \in \mathbb{R}^n \mid g_0(\underline{a}) \ge 0, \dots, g_r(\underline{a}) \ge 0\}$$

Want to minimize f over K

$$\begin{array}{ll} f_* = \inf f(\underline{a}) & \text{ s.t. } \underline{a} \in K \\ = \sup a \in \mathbb{R} & \text{ s.t. } f - a \geq 0 \text{ on } K \end{array}$$

NP-hard

RAG helps

$$f_* = \sup a \in \mathbb{R}$$
 s.t. $f - a \ge 0$ on K

•
$$M(g) := \{ p = \sum_j h_j^2 g_{i_j} \text{ for some } h_i \in \mathbb{R}[\underline{X}] \}$$

sos relaxation

$$f_{sos} = \sup a \in \mathbb{R}$$
 s.t. $f - a \in M(g)$ "SDP" \odot

RAG helps

$$f_* = \sup a \in \mathbb{R}$$
 s.t. $f - a \ge 0$ on K

•
$$M(g) := \{ p = \sum_j h_j^2 g_{i_j} \text{ for some } h_i \in \mathbb{R}[\underline{X}] \}$$

sos relaxation

$$f_{sos} = \sup a \in \mathbb{R}$$
 s.t. $f - a \in M(g)$ "SDP" \odot

- *f_{sos}* is always a lower bound but might be strict
- If M(g) is archimedean:
 f_{*} = f_{sos}

SOS hierarchy

•
$$M(g)_t := \{ p = \sum_j h_j^2 g_{i_j} \text{ for some } h_i \in \mathbb{R}[\underline{X}]_t \}$$

sos hierarchy

$$f_t = \sup a \in \mathbb{R} \quad \text{s.t.} \ f - a \in M(g)_t \quad \text{SDP} \odot$$

We have

- $f_t \leq f_{t+1} \leq f_*$
- f_t converges to f_{sos} as $t \to \infty$
- If M(g) is archimedean: $f_{sos} = f_*$

SOS hierarchy

- $M(g)_t := \{ p = \sum_j h_j^2 g_{i_j} \text{ for some } h_i \in \mathbb{R}[\underline{X}]_t \}$
- sos hierarchy

$$f_t = \sup a \in \mathbb{R} \quad \text{s.t. } f - a \in M(g)_t \quad \text{SDP } \circledast$$

- We have
 - $f_t \leq f_{t+1} \leq f_*$
 - f_t converges to f_{sos} as $t \to \infty$
 - If M(g) is archimedean: $f_{sos} = f_*$
- Certificate of exactness:
 - Flatness of dual solution
 - Allows extraction of optimizers

NC Polynomials

- Want to replace scalar variables by matrices/operators
- Free algebra $\mathbb{R}\langle \underline{X} \rangle$ with noncommuting variables X_1, \ldots, X_n
- Polynomial

$$f=\sum_{w}f_{w}w$$

• Let
$$\underline{A} \in (\mathcal{S}^d)^n$$
: $f(\underline{A}) = f_1 I_d + f_{X_1} A_1 + f_{X_2 X_1} A_2 A_1 \dots$

NC Polynomials

- Want to replace scalar variables by matrices/operators
- Free algebra $\mathbb{R}\langle \underline{X} \rangle$ with noncommuting variables X_1, \ldots, X_n
- Polynomial

$$f=\sum_{w}f_{w}w$$

- Let $\underline{A} \in (S^d)^n$: $f(\underline{A}) = f_1 I_d + f_{X_1} A_1 + f_{X_2 X_1} A_2 A_1 \dots$
- Add involution * on $\mathbb{R}\langle \underline{X} \rangle$
 - fixes \mathbb{R} and $\{X_1, \ldots, X_n\}$ pointwise

$$X_i^* = X_i$$

Consequence

$$f^*f(\underline{A}) = f(\underline{A})^T f(\underline{A}) \succeq 0$$

NC Polynomial Optimization

- Let $f \in \mathbb{R}\langle \underline{X} \rangle$
- $g_0 = 1, g_1, \dots, g_r \in \mathbb{R}\langle \underline{X} \rangle$ defining a semi-algebraic set:

$$K = \{\underline{A} \mid g_0(\underline{A}) \succeq 0, \dots, g_r(\underline{A}) \succeq 0\}$$

Want to minimize f over K

$$f_* = \sup a \in \mathbb{R}$$
 s.t. $f - a \ge 0$ on K

Eigenvalue optimization

• Let $f \in \mathbb{R}\langle \underline{X} \rangle$

 $f_{nc} = \sup a \in \mathbb{R}$ s.t. $f - a \succeq 0$ on K

► Observation: Checking if f = ∑_i h_i^{*} h_i is an SDP so as well checking f = ∑_j h_j^{*} g_{ij} h_j (with degree bounds)

Eigenvalue optimization

• Let $f \in \mathbb{R}\langle \underline{X} \rangle$

 $f_{nc} = \sup a \in \mathbb{R}$ s.t. $f - a \succeq 0$ on K

- ► Observation: Checking if f = ∑_i h_i^{*} h_i is an SDP so as well checking f = ∑_j h_j^{*} g_{ij} h_j (with degree bounds)
- sos relaxation

$$M_{\mathit{nc}}(g) := \{ p = \sum_j h_j^* g_{i_j} h_j ext{ for some } h_i \in \mathbb{R} \langle \underline{X}
angle \}$$

$$f_{sos} = \sup a \in \mathbb{R}$$
 s.t. $f - a \in M_{nc}(g)$

- Fact: $f_{sos} \leq f_{nc}$
- Theorem (Helton et al.): If $M_{nc}(g)$ is archimedean, then $f_{sos} = f_{nc}$.

Eigenvalue optimization

• Let $f \in \mathbb{R}\langle \underline{X} \rangle$

$$f_{nc} = \sup a \in \mathbb{R}$$
 s.t. $f - a \succeq 0$ on K

•
$$M_{nc}(g)_t := \{ p = \sum_j h_j^* g_{i_j} h_j \text{ for some } h_j \in \mathbb{R} \langle \underline{X} \rangle_t \}$$

sos hierarchy

 $f_t = \sup a \in \mathbb{R}$ s.t. $f - a \in M_{nc}(g)_t$ SDP \odot

• $f_t \leq f_{t+1} \leq f_{nc}$ but inequalities might be strict

- f_t converges to f_{sos} as $t \to \infty$
- ▶ If $M_{nc}(g)$ is archimedean: $f_{sos} = f_{nc}$ and hence $f_t \to f_{nc}$ as $t \to \infty$

Trace optimization

• Let
$$f \in \mathbb{R}\langle \underline{X} \rangle$$

$$f_{tr} = \sup a \in \mathbb{R}$$
 s.t. $Tr(f - a) \ge 0$ on K

K contains only operators, for which a trace is defined

Trace optimization

• Let $f \in \mathbb{R}\langle \underline{X} \rangle$

 $f_{tr} = \sup a \in \mathbb{R}$ s.t. $\operatorname{Tr}(f - a) \ge 0$ on K

NP-hard 😣 J

K contains only operators, for which a trace is defined

If f = ∑_j h_j^{*}g_{ij}h_j + ∑_k[p_k, q_k] then Tr(f(A)) ≥ 0 for all A ∈ K
 sos relaxation

 $M_{tr}(g) := \{\sum_{j} h_{j}^{*} g_{i_{j}} h_{j} \text{ for some } h_{i} \in \mathbb{R}\langle \underline{X} \rangle \} + [\mathbb{R}\langle \underline{X} \rangle, \mathbb{R}\langle \underline{X} \rangle]$

$$f_{sos} = \sup a \in \mathbb{R}$$
 s.t. $f - a \in M_{tr}(g)$

Fact: $f_{sos} \leq f_{tr}$

▶ Theorem (B.,Klep et al.): If $M_{tr}(g)$ is archimedean, then $f_{sos} = f_{tr}$.

Trace optimization

• Let $f \in \mathbb{R}\langle \underline{X} \rangle$

 $f_{tr} = \sup a \in \mathbb{R}$ s.t. $\operatorname{Tr}(f - a) \ge 0$ on K

NP-hard 😣 🖌

• $M_{tr}(g)_t := \{\sum_j h_j^* g_{i_j} h_j \text{ for some } h_j \in \mathbb{R}\langle \underline{X} \rangle_t\} + \sum [\mathbb{R}\langle \underline{X} \rangle, \mathbb{R}\langle \underline{X} \rangle]$

sos hierarchy

$$f_t = \sup a \in \mathbb{R}$$
 s.t. $f - a \in M_{tr}(g)_t$ SDP \odot

- $f_t \leq f_{t+1} \leq f_{tr}$ but inequalities might be strict
- f_t converges to f_{sos} as $t \to \infty$
- ▶ If $M_{tr}(g)$ is archimedean: $f_{sos} = f_{tr}$ and hence $f_t \to f_{tr}$ as $t \to \infty$

Back to Quantum Information

- Entanglement is one of the key features in Quantum Information
- Bell '64:

- How to distinguish C and Q?
- What is the correct definition for Q? Does it matter?
- Can Polynomial Optimization help to understand these sets?

Basics of quantum theory

- ► A quantum system corresponds to a Hilbert space *H*
- Its states are unit vectors on \mathcal{H}

Basics of quantum theory

- ► A quantum system corresponds to a Hilbert space *H*
- Its states are unit vectors on \mathcal{H}
- ► A state on a composite system is a unit vector ψ on a tensor Hilbert space, e.g. H_A ⊗ H_B
- ψ is entangled if it is not a product state

 $\psi_A \otimes \psi_B$ with $\psi_A \in \mathcal{H}_A, \psi_B \in \mathcal{H}_B$

Basics of quantum theory

- A quantum system corresponds to a Hilbert space H
- Its states are unit vectors on H
- A state on a composite system is a unit vector ψ on a tensor Hilbert space, e.g. H_A ⊗ H_B
- ψ is entangled if it is not a product state

 $\psi_{A} \otimes \psi_{B}$ with $\psi_{A} \in \mathcal{H}_{A}, \psi_{B} \in \mathcal{H}_{B}$

- A state $\psi \in \mathcal{H}$ can be measured
 - ▶ outcomes a ∈ A
 - ▶ POVM: a family $\{E_a\}_{a \in A} \subseteq B(\mathcal{H})$ with $E_a \succeq 0$ and $\sum_{a \in A} E_a = 1$
 - probablity of getting outcome *a* is $p(a) = \psi^T E_a \psi$.

Nonlocal bipartite correlations

- Question sets S, T, Answer sets A, B
- No (classical) communication

• Which correlations p(a, b | s, t) are possible?

Correlations

Classical strategy ${\mathcal C}$

Independent probability distributions $\{p_s^a\}_a$ and $\{p_t^b\}_b$:

$$p(a,b \mid s,t) = p_s^a \cdot p_t^b$$

shared randomness: allow convex combinations

Correlations

Classical strategy \mathcal{C}

Independent probability distributions $\{p_s^a\}_a$ and $\{p_t^b\}_b$:

$$p(a,b \mid s,t) = p_s^a \cdot p_t^b$$

shared randomness: allow convex combinations

Quantum strategy \mathcal{Q}

POVMs $\{E_s^a\}_a$ and $\{F_t^b\}_b$ on Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B, \psi \in \mathcal{H}_A \otimes \mathcal{H}_B$:

$$p(a,b \mid s,t) = \psi^{T}(E_{s}^{a} \otimes F_{t}^{b})\psi$$

- ► Nonlocality: $(E_s^a \otimes 1)(1 \otimes F_t^b) = (1 \otimes F_t^b)(E_s^a \otimes 1)$
- If $\psi = \psi_A \otimes \psi_B$ then we have classical correlation

More correlations

Quantum strategy ${\cal Q}$

POVMs $\{E_s^a\}_a$ and $\{F_t^b\}_b$ on Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B, \psi \in \mathcal{H}_A \otimes \mathcal{H}_B$:

$$p(a,b \mid s,t) = \psi^{\mathsf{T}}(\mathsf{E}_{s}^{a} \otimes \mathsf{F}_{t}^{b})\psi$$

More correlations

Quantum strategy ${\cal Q}$

POVMs $\{E_s^a\}_a$ and $\{F_t^b\}_b$ on Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B, \psi \in \mathcal{H}_A \otimes \mathcal{H}_B$:

$$p(a,b \mid s,t) = \psi^{T}(E_{s}^{a} \otimes F_{t}^{b})\psi$$

Quantum strategy Q_c

POVMs $\{E_s^a\}_a$ and $\{F_t^b\}_b$ on a joint Hilbert space, but $[E_x^a, F_y^b] = 0$:

$$p(a, b \mid s, t) = \psi^{T} (E_{s}^{a} \cdot F_{t}^{b}) \psi$$

Fact

$$\mathcal{C}\subseteq \mathcal{Q}\subseteq \overline{\mathcal{Q}}\subseteq \mathcal{Q}_{\textbf{C}}$$

Tsirelson's problem

Fact

$\mathcal{C}\subseteq\mathcal{Q}\subseteq\overline{\mathcal{Q}}\subseteq\mathcal{Q}_{\textbf{C}}$

- Bell: $C \neq Q$
- ▶ closure conjecture [Slofstra '16]: $Q \neq \overline{Q}$
- weak Tsirelson [Slofstra '16]: $Q \neq Q_c$
- Dykema et al. '17: Concrete example in a decent subset of Q
- strong Tsirelson (open): Is $\overline{Q} = Q_c$?
- strong Tsirelson is equivalent to Connes embedding problem

Nonlocal games

- Characterized by
 - > 2 sets of questions S, T, asked with probability distribution π
 - 2 sets of answers A, B
 - A winning predicate $V : A \times B \times S \times T \rightarrow \{0, 1\}$

Nonlocal games

- Characterized by
 - ▶ 2 sets of questions S, T, asked with probability distribution π
 - 2 sets of answers A, B
 - A winning predicate $V : A \times B \times S \times T \rightarrow \{0, 1\}$

Winning probability (value of the game)

$$\omega = \sup_{p} \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b; s, t) p(a, b | s, t)$$
$$= \sup_{p} \sum_{a, b, s, t} f_{abst} p(a, b | s, t)$$

• optimize over correlations $p \in \{C, Q, Q_c\}$

SOS relaxation over $\ensuremath{\mathcal{C}}$

$$\omega_{\mathcal{C}} = \sup_{p} \sum_{a,b,s,t} f_{abst} p_{s}^{a} \cdot p_{t}^{b}$$

SOS relaxation over $\ensuremath{\mathcal{C}}$

$$\omega_{\mathcal{C}} = \sup_{p} \sum_{a,b,s,t} f_{abst} p_{s}^{a} \cdot p_{t}^{b}$$

- We can write this as POP:
 - $f((\underline{p},\underline{q})) := \sum_{a,b,s,t} f_{abst} p_s^a \cdot q_t^b \in \mathbb{R}[\underline{p},\underline{q}]$
 - $\mathcal{K} = \{(\underline{p}, \underline{q}) \mid p_s^a, q_t^b \ge 0, \sum_a p_s^a = \sum_b q_t^b = 1\}$
 - M(g) is archimedean

SOS relaxation over $\ensuremath{\mathcal{C}}$

$$\omega_{\mathcal{C}} = \sup_{p} \sum_{a,b,s,t} f_{abst} p_{s}^{a} \cdot p_{t}^{b}$$

We can write this as POP:

- $f((\underline{p},\underline{q})) := \sum_{a,b,s,t} f_{abst} p_s^a \cdot q_t^b \in \mathbb{R}[\underline{p},\underline{q}]$
- $\mathcal{K} = \{(\underline{p}, \underline{q}) \mid p_s^a, q_t^b \ge 0, \sum_a p_s^a = \sum_b q_t^b = 1\}$
- M(g) is archimedean

Hence

$$\begin{split} \omega_{\mathcal{C}} &= \sup f(\underline{p},\underline{q}); \quad \text{s.t.} \ (\underline{p},\underline{q}) \in K \\ &= \inf a \in \mathbb{R} \qquad \text{s.t.} \ a - f \geq 0 \text{ on } K \\ &= \inf a \in \mathbb{R} \qquad \text{s.t.} \ a - f \in M(g) \quad (f_{sos}) \\ &\leq \inf a \in \mathbb{R} \qquad \text{s.t.} \ a - f \in M(g)_t \quad (f_t) \end{split}$$

Converging hierarchy of SDP upper bounds

SOS relaxation over Q_c

$$\omega_{\mathcal{Q}_{c}} = \sup \sum_{a,b,s,t} f_{abst} \psi^{\mathsf{T}} (\boldsymbol{E}_{s}^{a} \cdot \boldsymbol{F}_{t}^{b}) \psi$$

SOS relaxation over Q_c

$$\omega_{\mathcal{Q}_{c}} = \sup \sum_{a,b,s,t} f_{abst} \psi^{\mathsf{T}} (\boldsymbol{E}_{s}^{a} \cdot \boldsymbol{F}_{t}^{b}) \psi$$

We can write this as NC-POP:

- $f(\underline{E},\underline{F}) := \sum_{a,b,s,t} f_{abst} E_s^a \cdot F_t^b \in \mathbb{R} \langle \underline{E},\underline{F} \rangle$
- $K = \{(\underline{E}, \underline{F}) \mid E_s, F_t \succeq 0, \sum_a E_s^a = \sum_b F_t^b = 1, [E_s^a, F_t^b] = 0\}$

• $M_{nc}(g)$ is archimedean

SOS relaxation over Q_c

$$\omega_{\mathcal{Q}_{c}} = \sup \sum_{a,b,s,t} f_{abst} \psi^{\mathsf{T}} (E_{s}^{a} \cdot F_{t}^{b}) \psi$$

We can write this as NC-POP:

- $f(\underline{E},\underline{F}) := \sum_{a,b,s,t} f_{abst} E_s^a \cdot F_t^b \in \mathbb{R} \langle \underline{E},\underline{F} \rangle$
- $K = \{(\underline{E}, \underline{F}) \mid E_s, F_t \succeq 0, \sum_a E_s^a = \sum_b F_t^b = 1, [E_s^a, F_t^b] = 0\}$
- *M_{nc}(g)* is archimedean

Hence

$$\begin{split} \omega_{\mathcal{C}} &= \sup \psi^{\mathsf{T}} f(\underline{E}, \underline{F}) \psi; \quad \text{s.t.} \ (\underline{E}, \underline{F}) \in \mathsf{K} \\ &= \inf a \in \mathbb{R} \qquad \qquad \text{s.t.} \ a - f \succeq 0 \text{ on } \mathsf{K} \\ &= \inf a \in \mathbb{R} \qquad \qquad \text{s.t.} \ a - f \in \mathsf{M}_{\mathsf{nc}}(g) \quad (f_{\mathsf{sos}}) \\ &\leq \inf a \in \mathbb{R} \qquad \qquad \text{s.t.} \ a - f \in \mathsf{M}_{\mathsf{nc}}(g)_t \quad (f_t) \end{split}$$

Converging hierarchy of SDP upper bounds

SOS relaxation over Q

$$\omega_{\mathcal{Q}} = \sup \sum_{a,b,s,t} f_{abst} \operatorname{Tr}(E_s^a \otimes F_t^b)$$

► Cameron et al.: For most games we have $p(a, b | s, t) = \text{Tr}(\tilde{E}_s^a \tilde{F}_t^b)$ with $\tilde{E}_s^a, \tilde{F}_t^b \succeq 0, \sum_a \tilde{E}_s^a = \sum_b \tilde{F}_t^b = D$ with $\text{Tr}(D^2) = 1$

SOS relaxation over \mathcal{Q}

$$\omega_{\mathcal{Q}} = \sup \sum_{a,b,s,t} f_{abst} \operatorname{Tr}(E_s^a \otimes F_t^b)$$

► Cameron et al.: For most games we have $p(a, b | s, t) = \text{Tr}(\tilde{E}_s^a \tilde{F}_t^b)$ with $\tilde{E}_s^a, \tilde{F}_t^b \succeq 0, \sum_a \tilde{E}_s^a = \sum_b \tilde{F}_t^b = D$ with $\text{Tr}(D^2) = 1$

We can write this as NC-POP:

•
$$f(\underline{E},\underline{F}) := \sum_{a,b,s,t} f_{abst} E_s^a \cdot F_t^b \in \mathbb{R} \langle \underline{E},\underline{F} \rangle$$

• $K = \{ (\underline{E}, \underline{F}) \mid E_s, F_t \succeq 0, \sum_a E_s^a = \sum_b F_t^b = D, \operatorname{Tr}(D^2) = 1 \}$

Hence

$$\begin{split} \omega_{\mathcal{C}} &= \sup \operatorname{Tr} f(\underline{E}, \underline{F}); \quad \text{s.t.} \ (\underline{E}, \underline{F}, D) \in K \\ &\leq \inf a \in \mathbb{R} \qquad \text{s.t.} \ a - f \in M_{tr}(g) \\ &\leq \inf a \in \mathbb{R} \qquad \text{s.t.} \ a - f \in M_{tr}(g)_t \end{split}$$

Converging sequence of upper SDP bounds

CHSH Game

► Questions S = T = {0,1}, Answers A = B = {0,1}

Alice & Bob win, if $a + b \equiv st \mod 2$

CHSH Game

- Questions $S = T = \{0, 1\}$, Answers $A = B = \{0, 1\}$
- Alice & Bob win, if $a + b \equiv st \mod 2$

$$\blacktriangleright \omega_{\mathcal{C}} = \frac{3}{4}$$

•
$$\omega_{\mathcal{Q}} = \omega_{\mathcal{Q}_c} = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.854$$

1st level of SOS hierarchies are exact

CHSH Game

- ► Questions S = T = {0,1}, Answers A = B = {0,1}
- Alice & Bob win, if $a + b \equiv st \mod 2$

$$\blacktriangleright \omega_{\mathcal{C}} = \frac{3}{4}$$

•
$$\omega_{\mathcal{Q}} = \omega_{\mathcal{Q}_c} = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.854$$

- 1st level of SOS hierarchies are exact
- Alternative formulation:
- > 2 measurements with 2 outcomes each: $E_s^0, E_s^1, F_t^0, F_t^1$
- Setting $E_s := E_s^0 E_s^1$, $F_t := F_t^0 F_t^1$ one obtains the CHSH inequality

$$f_{CHSH} := E_0 F_0 + E_0 F_1 + E_1 F_0 - E_1 F_1$$

• Optimizing f_{CHSH} over variants of C, Q give ω_C, ω_Q

I3322 inequality

• Questions $S = T = \{0, 1, 2\}$, Answers $A = B = \{0, 1\}$

$f := E_0F_0 + E_0F_1 + E_0F_2 + E_1F_0 + E_1F_1 - E_1F_3 + E_2F_0 - E_2F_1$ $- E_0 - 2F_0 - F_1$

I3322 inequality

- ► Questions S = T = {0, 1, 2}, Answers A = B = {0, 1}
 - $f := E_0 F_0 + E_0 F_1 + E_0 F_2 + E_1 F_0 + E_1 F_1 E_1 F_3 + E_2 F_0 E_2 F_1$ $- E_0 - 2F_0 - F_1$
- Maximizing over C: $f_* \leq 0$
- Best lower bound: 0.250875384

I3322 inequality

- ► Questions S = T = {0, 1, 2}, Answers A = B = {0, 1}
 - $f := E_0 F_0 + E_0 F_1 + E_0 F_2 + E_1 F_0 + E_1 F_1 E_1 F_3 + E_2 F_0 E_2 F_1$ $- E_0 - 2F_0 - F_1$
- Maximizing over C: $f_* \leq 0$
- Best lower bound: 0.250875384
- NC-SOS upper bounds:

level	psd	trace
1	0.375	0.375
2	0.25094006	0.2509397
3	0.25087556	0.2508754

► Pal & Vertesi computed (eigenvalue) SOS-bounds for 240 Bell inequalities of which 20 are not matching (≥ 10⁻⁴) the lower bound. 4 of them get exact (≤ 10⁻⁸) using trace SOS-bounds, about 1/2 of them improve

 $\chi(G) = \min t \in \mathbb{N} \text{ s.t. } x_u^i \in \{0, 1\}, u \in V(G), i \in [t],$ $\sum_{i \in [t]} x_u^i = 1 \quad \forall u \in V(G),$ $x_u^i x_u^j = 0 \quad \forall i \neq j, \forall u \in V(G),$ $x_u^i x_v^j = 0 \quad \forall uv \in E(G)$

 $\chi_q(G) = \min t \in \mathbb{N} \text{ s.t. } x_u^i \succeq 0, u \in V(G), i \in [t],$

$$\sum_{i \in [t]} x_u^i = 1 \quad \forall u \in V(G),$$

$$x_u^i x_u^j = 0 \quad \forall i \neq j, \forall u \in V(G), \quad (*)$$

$$x_u^i x_v^i = 0 \quad \forall uv \in E(G)$$

$$(x_u^i)^2 = x_u^i \quad \forall u \in V(G), i \in [t]$$

24

 $\chi_{q}(G) = \min t \in \mathbb{N} \text{ s.t. } x_{u}^{i} \succeq 0, u \in V(G), i \in [t],$ $\sum_{i \in [t]} x_{u}^{i} = 1 \quad \forall u \in V(G),$ $x_{u}^{i} x_{u}^{j} = 0 \quad \forall i \neq j, \forall u \in V(G), \quad (*)$ $x_{u}^{i} x_{v}^{i} = 0 \quad \forall uv \in E(G)$ $(x_{u}^{i})^{2} = x_{u}^{i} \quad \forall u \in V(G), i \in [t]$

We can write this as

min $t \in \mathbb{N}$ s.t. \exists operator solution of (*)

24

Nullstellensätze

Let $g_1, \ldots, g_r \in \mathbb{C}[\underline{X}]$

Theorem (weak Nullstellensatz)

Let $I = (g_1, \dots, g_r), V(I) := \{\underline{a} \in \mathbb{C}^n \mid g_1(\underline{a}) = \dots = g_r(\underline{a}) = 0\}.$ Then

 $V(I) = \emptyset \Leftrightarrow 1 \in I.$

Nullstellensätze

Let $g_1, \ldots, g_r \in \mathbb{C}[\underline{X}]$

Theorem (weak Nullstellensatz) Let $I = (g_1, ..., g_r)$, $V(I) := \{\underline{a} \in \mathbb{C}^n \mid g_1(\underline{a}) = \cdots = g_r(\underline{a}) = 0\}$. Then

 $V(I) = \emptyset \Leftrightarrow 1 \in I.$

Let $g_1, \ldots, g_r \in \mathbb{C}\langle \underline{X} \rangle$

Theorem (Amitsur Nullstellensatz) Let $Z(I) := \{\underline{A} \in \mathbb{R}^n \mid \mathbb{R} \text{ primitive ring }, g_1(\underline{A}) = \cdots = g_r(\underline{A}) = 0\}$. Then

 $Z(I) = \varnothing \Leftrightarrow 1 \in (g_1, \ldots, g_r).$

We have an algorithm to compute NC Gröbner bases, but it might not terminate...

Against all odds...¹

• Gröbner basis: $4 \le \chi_q(G_{13})$

¹with Piovesan, Mancinska, Roberson

Against all odds...¹

- Gröbner basis: $4 \le \chi_q(G_{13}) \le \chi(G_{13}) = 4$
- Consequence $\chi_q(G_{14}) = 4 < 5 = \chi(G_{14})$

¹with Piovesan, Mancinska, Roberson

Final Remarks

- Quantum theory gives archimedean property for NC-SOS relaxations
- dual side (linear forms & moments) offers even more bounds (Laurent et al.)
- We can transfer the flatness machinery & might obtain concrete optimizer/strategies

Final Remarks

- Quantum theory gives archimedean property for NC-SOS relaxations
- dual side (linear forms & moments) offers even more bounds (Laurent et al.)
- We can transfer the flatness machinery & might obtain concrete optimizer/strategies
- Open problems
 - What is the geometry of (quantum) correlations?
 - Is there always a finite dimensional solution/strategy for a finite game?
 - How can we detect optimality if there is no finite dimensional solution?

Final Remarks

- Quantum theory gives archimedean property for NC-SOS relaxations
- dual side (linear forms & moments) offers even more bounds (Laurent et al.)
- We can transfer the flatness machinery & might obtain concrete optimizer/strategies
- Open problems
 - What is the geometry of (quantum) correlations?
 - Is there always a finite dimensional solution/strategy for a finite game?
 - How can we detect optimality if there is no finite dimensional solution?

Thank you for your attention.

POEMA Polynomial Optimization, Efficiency through Moments and Algebra Marie Skłodowska-Curie Innovative Training Network 2019-2022

POEMA network goal is to train scientists at the interplay of algebra, geometry and computer science for polynomial optimization problems and to foster scientific and technological advances, stimulating interdisciplinary and intersectoriality knowledge exchange between algebraists, geometers, computer scientists and industrial actors facing real-life optimization problems.

Partners:

- Inria, Sophia Antipolis, France (Bernard Mourrain)
- 2 CNRS, LAAS, Toulouse, France (Didier Henrion)
- (3) Sorbonne Université, Paris, France (Mohab Safey el Din)
- 4 NWO-I/CWI, Amsterdam, the Netherlands (Monique Laurent)
- 5 Univ. Tilburg, the Netherlands (Etienne de Klerk)
- 6 Univ. Konstanz, Germany (Markus Schweighofer)
- 🕜 Univ. degli Studi di Firenze, Italy (Giorgio Ottaviani)
- (8) Univ. of Birmingham, UK (Mikal Kočvara)
- 9 F.A. Univ. Erlangen-Nuremberg, Germany (Michael Stingl)
- 10 Univ. of Tromsoe, Norway (Cordian Riener)
- Artelys SA, Paris, France (Arnaud Renaud)

Associate partners:

- IBM Research, Ireland (Martin Mevissen)
- NAG, UK (Mike Dewar)
- RTE, France (Jean Maeght)

15 PhD positions available from Sep. 1st 2019

Contact: bernard.mourrain@inria.fr, the partner leaders, www-sop.inria.fr/members/Bernard.Mourrain/ announces/POEMA/